Sustained Release of Antibacterial Agents from Doped Halloysite Nanotubes
نویسندگان
چکیده
The use of nanomaterials for improving drug delivery methods has been shown to be advantageous technically and viable economically. This study employed the use of halloysite nanotubes (HNTs) as nanocontainers, as well as enhancers of structural integrity in electrospun poly-e-caprolactone (PCL) scaffolds. HNTs were loaded with amoxicillin, Brilliant Green, chlorhexidine, doxycycline, gentamicin sulfate, iodine, and potassium calvulanate and release profiles assessed. Selected doped halloysite nanotubes (containing either Brilliant Green, amoxicillin and potassium calvulanate) were then mixed with poly-e-caprolactone (PLC) using the electrospinning method and woven into random and oriented-fibered nanocomposite mats. The rate of drug release from HNTs, HNTs/PCL nanocomposites, and their effect on inhibiting bacterial growth was investigated. Release profiles from nanocomposite mats showed a pattern of sustained release for all bacterial agents. Nanocomposites were able to inhibit bacterial growth for up to one-month with only a slight decrease in bacterial growth inhibition. We propose that halloysite doped nanotubes have the potential for use in a variety of medical applications including sutures and surgical dressings, without compromising material properties.
منابع مشابه
Doped Halloysite Nanotubes for Use in the 3D Printing of Medical Devices
Previous studies have established halloysite nanotubes (HNTs) as viable nanocontainers capable of sustained release of a variety of antibiotics, corrosion agents, chemotherapeutics and growth factors either from their lumen or in outer surface coatings. Accordingly, halloysite nanotubes (HNTs) hold great promise as drug delivery carriers in the fields of pharmaceutical science and regenerative ...
متن کاملHalloysite Nanotubes: Controlled Access and Release by Smart Gates
Hollow halloysite nanotubes have been used as nanocontainers for loading and for the triggered release of calcium hydroxide for paper preservation. A strategy for placing end-stoppers into the tubular nanocontainer is proposed and the sustained release from the cavity is reported. The incorporation of Ca(OH)₂ into the nanotube lumen, as demonstrated using transmission electron microscopy (TEM) ...
متن کاملPerformance evaluation of nanoclay enriched anti-microbial hydrogels for biomedical applications
A major factor contributing to the failure of orthopedic and orthodontic implants is post-surgical infection. Coating metallic implant surfaces with anti-microbial agents has shown promise but does not always prevent the formation of bacterial biofilms. Furthermore, breakdown of these coatings within the human body can cause release of the anti-microbial drugs in an uncontrolled or unpredictabl...
متن کاملClay nanotube-biopolymer composite scaffolds for tissue engineering.
Porous biopolymer hydrogels doped at 3-6 wt% with 50 nm diameter/0.8 μm long natural clay nanotubes were produced without any cross-linkers using the freeze-drying method. The enhancement of mechanical strength (doubled pick load), higher water uptake and thermal properties in chitosan-gelatine-agarose hydrogels doped with halloysite was demonstrated. SEM and AFM imaging has shown the even dist...
متن کاملElectrospun poly(vinyl alcohol) composite nanofibers with halloysite nanotubes for the sustained release of sodium dpantothenate
Poly(vinyl alcohol) (PVA) nanofibers containing halloysite nanotubes (HNTs) loaded with sodium D-pantothenate (SDP) were successfully fabricated via simple blend-electrospinning. SDP was efficiently loaded into the innate HNT lumen with an SDP/ HNT mass ratio of 1.5:1 via vacuum treatment. The SDP-loaded HNT-inclusion complex was evaluated with drug-loading efficiency testing, Fourier transform...
متن کامل